CO2_2016 - page 17

CRC Press, Boca Raton, FL, (2002).
3. Kowalczuk M., Adamus G., Mass Spectrometry Reviews, 35,
188–198 (2016).
4. Adamus G., Sikorska W., Kowalczuk M., Montaudo M., Scandola
M., Macromolecules, 33, 5797–5802 (2000).
5. Adamus G., Sikorska W., Kowalczuk M., Noda I., Satkowski MM.,
Rapid Commun. Mass Spectrom., 17, 2260–
2266 (2003).
6. Zagar E., Krzan A., Adamus G., Kowalczuk M.,
Biomacromolecules 7, 2210–2216 (2006).
7. Wei L., Guho N.M., Coats E.R., McDonald A.G., J Appl. Polym.
Sci., 131 (2014):DOI: 10.1002/APP.40333
8. Adamus G., Montaudo M.S., Montaudo G., Kowalczuk M., Rapid
Commun. Mass Spectrom.,18, 1436–1446 (2004).
9. Kowalczuk M., Polym Sci. Series A, 51,1229–1232 (2009).
10. Adamus G., Kowalczuk M., Biomacromolecules, 9, 96–703
(2008).
11. Adamus G., Kwiecien I., Maksymiak M., Ba
ł
akier T., Jurczak J.,
Kowalczuk M., Anal. Chim Acta, 808, 104–114
(2014).
12. Adamus G., Macromolecules 42, 4547–4557(2009).
13. Kwiecie
α
I., Ba
ł
akier T., Jurczak J., Kowalczuk M., Adamus G.,
Rapid Commun. Mass Spectrom., 29, 533–544
(2015).
14. Rydz J., Wolna-Stypka K., Adamus G., Janeczek H., Musio
ł
M.,
Sobota M., Marcinkowski A., Kr
ž
an A., Kowalczuk
M,. Chem. Biochem. Eng. Q., 29, 247- 259 (2015).
15. Sikorska W., Adamus G., Dobrzynski P., Libera M., Rychter P.,
Krucinska I.,Komisarczyk A., Cristea M.,
Kowalczuk M., Polym. Deg. Stab., 110, 518–528 (2014).
16. Barner-Kowollik C., Gründling T., Falkenhagen J., Weidner S.
(Eds.), Mass Spectrometry in Polymer Chemistry, Wiley-VCH,
Weinheim, (2011).
17. Lutz M., Macromolecules, 48, 4759-4767 (2015).
18. Kumar Roy R.K., Meszynska A., Laure C., Charles L., Verchin
C., Lutz J., Nature Comm., (6) 7237, 1-8 (2015) DOI: 10.1038/
ncomms8237.
19. Nasioudis A., Memboeuf A., Heeren R.M.A., Smith D.F., Vekey
K., Drahos L., Van den Brink O.F., Anal. Chem., 82, 2294–2302
(2010).
20. Bednarski H., Sohlberg K., Domanski M., Weszka J., Adamus G.,
Kowalczuk M., Cozan V., Int. J. Mass Spectrom., 304, 15-24 (2011).
monodisperse sequence-encoded PHA oligomers after
their MS/MS sequencing will be used for reading of binary-
coded information. The bases of molecularglabelling thus
generated should enable identification of biodegradable
polymeric materials at the molecular level. Introducing
easily detectable oligomeric markers is anrendeavour that
constitutes an important opportunity for identification of
e.g. biodegradable polymer manufacturer, product serial
number or year of production.
CONCLUSIONS
Application of ESI-MS “soft” ionization method, which
generate predominantly quasimolecular ions, enables
sequence analysis of natural and synthetic biodegradable
macromolecules because it permits the production of
gas-phase ions from a wide variety of polymers, with little or
no fragmentation during ionization. Moreover, multistage
mass spectrometry permits the structural analysis of mass-
selected macromolecular ions of (co)polymers at the
molecular level. It may be therefore expected that ESI-MS
n
becomes the routine and accurate analytical technique of
biodegradable macromolecules for the years to come.
ACKNOWLEDGEMENT
This work was partially supported by the Polish National
Science Centre (Decision No. DEC-2012/07/B/ST5/00627). The
author is indebted to Professor David Hill from University of
Wolverhampton for stimulating discussion.
REFERENCES
1. Wang X., Zachman A., Chun Y., Shen F., Hwang Y., Sung H., lnt. J.
Card., 174, 688-695 (2014).
2. Montaudo G. and Lattimer RP. Mass Spectrometry of Polymers.
Parr_ChemToday_3-16_1-3-H_HPHT.indd 1
3/25/16 3:57 PM
15
Chimica Oggi - Chemistry Today
- vol. 34(2) March/April 2016
1...,7,8,9,10,11,12,13,14,15,16 18,19,20,21,22,23,24,25,26,27,...68
Powered by FlippingBook