CO2_2016 - page 57

55
Chimica Oggi - Chemistry Today
- vol. 34(2) March/April 2016
REFERENCE
1. M. Kostopoulou, A. Nikolaou, Trends in Analytical
Chemistry 2008, 27, 1023-1035.
2. A. Pal, K. Yew-Hoong, A. Yu-Chen, M. Reinhard,
Science of the Total Environment 2010, 408, 6062-
6069.
3. C. Mjiège, J.M. Choubert, L. Ribeiro, M. Eusebe, M.
Coquery, Environmental Pollution 2009, 157, 1721-
1726.
4. S. González, M. Catalá, R. Romo, J.L. Rodríguez, A.
Gil, Y. Valcárcel, Environment International 2010, 36
(21), 195-201.
5. P. Guerra, M. Kim, A. Shah, M. Alaee, S.A. Smyth,
Science of the Total Environment 2014, 473-474, 235-
243.
6. J. Radjenovi
α
, M. Petrovi
α
, D. Barceló, Water
Research 2009, 43 (3), 831–841.
7. M. Crane, C. Watts, T. Boucard, Science of the Total
Environment 2006, 367, 23–41.
8. N. Nowotny, B. Epp, C. Von Sonntag, H. Fahlenkamp,
Environmental Science and Technology 2007, 41 (6),
2050–2055.
9. F. Martínez, M.J. López-Muñoz, J. Aguado, J.A.
Melero, J. Arsuaga, A. Sotto, R. Molina, Y. Segura,
M.I. Pariente, A. Revilla, L. Cerro, G. Carenas, Water
Research 2013, 47 (15), 5647-5658.
10. I. Kim, H. Tanaka, Environment International 2009, 35
(5), 793–802.
11. N. González, R. Simarro, M.C. Molina, L.F. Bautista,
induced (29). In our experiments, although naproxen
was completely removed, zebrafish embryos showed
toxicity when they were treated with degradation media
for 1, 7 and 21 days. These results are in agreement
with carbamazepine presence and probably with toxic
intermediates derived from naproxen degradation.
However, when sample corresponding to 21 days was
filtered removing the microbiological component of the
media tested, mortality was reduced by 28%, indicating
that the total elimination of naproxen partially reduces the
toxicity of the filtrate (Table 1).
Moreover, while blank tests I and II showed low mortality,
significant physiological changes such as heartbeat reduced,
and circulatory stasis and chorion deterioration caused
(Figure 3). Therefore, in absence of PPCP´s, both Tween-80 (a
detergent that improves the contaminants solubility and also
modifies biological membranes) and nutrients (BHB) possibly
change osmotic potential of the medium and subsequently
disturb biological systems.
CONCLUSIONS
The strain isolated from urban waste water treatment
plant has been molecularly identified as
Serratia
sp.
This
Enterobacteriaceae
has the metabolic capacity to
degrade naproxen efficiently but not carbamazepine.
Naproxen elimination reduced zebrafish embryos mortality
at 28 %. The probability to find other
Enterobacteriaceae
with the capactity to degrade PPCPS is very high
according to the natural environment where those
microorganisms are found. Therefore, this strain is a
potential microorganism for being used in bioreactors and
sewage biodiscs in order to achieve the total elimination
of naproxen from effluent before discharge into rivers or
lakes.
Table 1.
Mortality results and physiological effects on zebrafish embryos over time in
experiments with and without chemicals. Degraded medium after 21 days was also
filtered to remove the possible negative effects of the microorganisms presence
before contact with embryos.
L. Delgado, J.A. Villa, Bioresource Technology 2011, 102 (20),
9438–9446.
12. R. Simarro, N. González, M.C. Molina, L.F. Bautista, FEMS Microbial
Ecology 2013, 83, 438-449.
13. R. Simarro, N. González, L.F. Bautista, M.C. Molina, Journal of
Hazardous Materials 2013, 262,158-167.
14. L. Araujo, N. Villa, N. Camargo, M. Bustos, T. García, A. de Jesús,
Environmental Chemistry Letters 2011, 9 (1),13–18.
15. P. Grenni, L. Patrolecco, N. Ademollo, A. Tolomei, A.B. Caracciolo,
Microchemical Journal 2013, 107, 158-164.
16. R. Loos, B.M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, G.
Bidoglio, European Commission, Joint Research Centre, Institute for
Environment and Sustainability 2008, 23568, 26-32.
17. P. Grenni, L. Patroleco, N. Ademollo, M. Di Lenola, A.B. Caracciolo,
Environmental Science and Pollution Research 2014, 21 (23),
13470–13479.
18. L. Proia, V. Osorio, S. Soley, M. Köck-Schulmeyer, S. Pérez, D. Barceló,
A.M. Romaní, S. Sabater, Environmental Pollution 2013, 178, 220–228.
19. R.S. Prosser, P.K. Sibley, Environmental International 2015, 75, 223-233.
20. C. Zhang, C. Willett, T. Fremgen, Current Protocols in Toxicology
2003.
21. A.J. Hill, H. Teraoka, W. Heideman, E. Richard, Toxicological
Sciences 2005, 86, 6–19.
22. M.C. Molina, N. González, L.F. Bautista, R. Sanz, R. Simarro, I.
Sánchez, J.L. Sanz, Biodegradation 2009, 20 (6), 789-800.
23. R.D. Fallon, B. Stieglitz, I. Turner Jr., Applied Microbiology and
Biotechnology 1997, 47 (2), 156-161.
24. S. Suárez, J.M. Lema, F. Omil, Water Reserach 2010, 44, 3214-3224.
25. D. Domaradzka, U. Guzik, K. Hupert-Kocurek, D. Wojcieszynska,
Water Air & Soil Pollution 2015, 226-297.
26. M.J. Benotti, B.J. Brownawell, Environmental Pollution 2009, 157 (3),
994-1002.
27. C.E. Rodríguez-Rodríguez, E. Marco-Urrea, G. Caminal, Journal of
Hazardous Materials 2010, 179 (1-3), 1152-1155.
28. E. Marco-Urrea, M. Pérez-Trujillo, P. Blánquez, T. Vicent, G. Caminal,
Bioresource Technology 2010, 101 (7), 2159-2166.
29. M.J. Winter, W.S. Redfern, A.J. Hayfield, S.F. Owen, J.P. Valentin, T.H.
Hutchnson, Journal of Pharmacological and Toxicological Methods
2008, 57 (3), 176–187.
30. H. E. Kunze, E. R. Vrscay, Inverse Problems 1999, 15, 745–770.
1...,47,48,49,50,51,52,53,54,55,56 58,59,60,61,62,63,64,65,66,67,...68
Powered by FlippingBook