Creatine timing on muscle mass and strength: Appetizer or Dessert?

INTRODUCTION

It is well established that the mechanical stimuli from resistance training increases muscle protein synthesis (1). Although the machinery for stimulating muscle protein synthesis is increased after resistance training (2), the anabolic response may be delayed post-exercise (3). The combination of creatine supplementation and resistance training may lead to greater muscle benefits than resistance training alone in young and older adults (4, 5). Furthermore, the timing of creatine ingestion may be an important factor for creating an anabolic environment for muscle growth (5). Emerging evidence suggests that creatine supplementation, in close proximity to resistance training sessions, may provide superior benefits compared to creatine intake at other times of the day (6, 7). While the mechanistic actions explaining the greater benefits from timed creatine ingestion are unknown, it is possible that blood flow kinetics and creatine transport are involved (8, 9). Therefore, the purpose of this review is to 1) briefly outline the potential beneficial effects of creatine supplementation, 2) review the emerging evidence involving the timing of creatine supplementation combined with resistance training, and 3) outline creatine supplementation strategies.

CREATINE SUPPLEMENTATION

Creatine, methyl-guanidino acetic acid, is a naturally occurring nitrogen-containing compound (5, 10, 11). Creatine excretion occurs at a rate of ~2 g·d⁻¹ (12). Creatine can be replaced via endogenous synthesis (1-2 g·d⁻¹) in the kidneys, liver, and pancreas or through dietary intake, typically ~1-3 g·d⁻¹ (11, 12). Creatine is found in high concentrations in red meat and seafood (12). Ninety-five percent of creatine is stored in skeletal muscle, of which 60-70 percent is phosphorylated (i.e. phosphocreatine) (13). Phosphocreatine rapidly resynthesizes adenosine diphosphate to help maintain adenosine triphosphate (ATP) during high intensity exercise such as resistance training (13). Theoretically, elevated phosphocreatine stores (via creatine supplementation) may increase exercise training intensity and the volume of work performed leading to greater muscle accretion and strength (reviewed in Branch (14); Rawson & Volek (15)). Several purported mechanisms exists which may help explain the typical increase in muscle mass and strength from creatine (4, 5, 10). Creatine supplementation elevates skeletal phosphocreatine and total creatine stores (16) which increases phosphocreatine resynthesis (17) and exercise fatigue resistance (18). Creatine may also influence myocellular water retention due to increased intracellular osmolarity and increase muscle glycogen storage (19). Subsequent muscle cell swelling may stimulate genes regulating various anabolic pathways (20). Furthermore, creatine has been shown to increase satellite cell differentiation (21), activity (22), and content (23); transcription factor activity (24), hormonal secretion (e.g. IGF-1;25), muscle protein kinetics (26), and decrease inflammation (27).
CREATINE TIMING

The timing of creatine supplementation is proving to be an important regulator of muscle growth (Table 1). The strategic ingestion of creatine immediately before and after resistance training sessions appears more important than ingesting creatine at other times of the day. For example, in the most recent study, we showed that creatine (0.1 g·kg⁻¹) immediately before and immediately after resistance training sessions for 8 months produced similar gains in muscle mass and strength. However, compared to placebo, only post-exercise creatine resulted in greater improvements in whole body lean tissue mass (creatine after = 6.2 percent vs. placebo = 1.4 percent) and leg press strength (creatine after = 28.3 percent vs. 3.4 percent; unpublished findings). The slightly greater benefit from post-exercise creatine supplementation indirectly supports the findings of Antonio and Ciccone (28) who found a greater muscle benefit from post-exercise creatine supplementation [5 g] in young adults compared to pre-exercise creatine supplementation. We previously found no differences between creatine supplementation (0.1 g·kg⁻¹) immediately before and vs. after resistance training sessions for 12 weeks in older adults (29). However, a major limitation of the studies by Antonio and Ciccone (28) and Candow et al. (29) was that a placebo (control) was not used for comparison to creatine. Consuming creatine immediately before (0.05 g·kg⁻¹) and immediately after (0.05 g·kg⁻¹) resistance training sessions (3 days/week, 10 weeks) resulted in greater muscle accretion (2.0 ± 0.3 cm) compared to placebo (0.8 ± 0.3 cm) and resistance training in healthy older males (59-77 years) [30]. These results support previous findings of a significant increase in lean tissue mass (6 percent), type II muscle fibre area (29 percent), and insulin growth factor I (78 percent) in adults [19-55 years] who ingested creatine before (0.03 g·kg⁻¹) and after (0.03 g·kg⁻¹) resistance training (6 days/week, 8 weeks) [25, 31]. Interestingly, in comparing the effects of creatine ingestion before (0.5 g·kg⁻¹) and after (0.5 g·kg⁻¹) resistance training (10 weeks) to creatine ingestion in the morning and evening on training days, Cribb et al. [6] showed that creatine ingestion before and after exercise resulted in significantly greater intramuscular creatine content, lean tissue mass, and muscle cross-sectional area of type II fibres. Although it is difficult to compare results across studies, it has been theorized that these positive results from creatine ingestion before and after exercise may be due to an increase in blood flow and delivery of creatine to exercising muscles [8], an upregulation of the kinetics involved in creatine transport [9].

SUMMARY

Resistance training is an effective strategy to increase muscle mass and strength. Emerging evidence indicates that the timing of creatine supplementation is an important intervention for augmenting the physiological adaptations from resistance training alone. Creatine ingested before and after resistance training sessions appears to be an effective strategy to increase muscle mass and strength, with slightly greater benefits if creatine is consumed post-exercise compared to pre-exercise creatine supplementation.

REFERENCES AND NOTES

6. Cribb, P.J., Hayes, A. “Effects of supplement timing and resistance

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Study Population</th>
<th>Intervention</th>
<th>Duration</th>
<th>Outcome Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonio and Ciccone 2013</td>
<td>N=19 Recreational Male Bodybuilders: Age 23 ± 2.9 yr; height 166 ± 23.2 cm; Weight 80.56 ± 10.42 kg</td>
<td>Randomly assigned: CR (0.5 g·PRE or CR (0.5 g·POST) RT sessions and any time on days off = 0 RT sessions)</td>
<td>4 wk</td>
<td>+FFM, FM, DM, Bench Press 1RM between groups. Magnitude based inference CR:POST possibly more beneficial for FFM, FM, 1RM</td>
</tr>
</tbody>
</table>
Perfectly timed for probiotic release. Perfectly positioned for the vegetarian market.

DRcaps™ capsules from Capsugel are innovative, acid-resistant capsules that protect sensitive ingredients from stomach acidity to ensure maximum benefit. They provide vegetarian consumers with a plant-based capsule designed to release when they need it—releasing fully at an intestinal pH of 6.8 without the use of coatings. Not only do they eliminate the cost and complexity of adding acid-resistant properties during manufacturing, DRcaps capsules also mask taste and minimize the risk of bad aftertaste. As the vegetarian supplement market continues to grow, DRcaps allows supplement manufacturers to grow with it. See the DRcaps capsule difference at capsugel.com.

OUR PURELY VEGETARIAN PORTFOLIO

www.capsugel.com - Contact us at +33 3 89 20 57 25

Vcaps®, Vcaps Plus, DRcaps and Plantcaps® are certified by the Vegetarian Society and are certified vegan by Vegan Action/Vegan Awareness Foundation.

Copyright © 2013 Capsugel Belgium NV. All rights reserved.